Restricted Lie algebras with maximal 0-PIM

Abstract

In this paper it is shown that the projective cover of the trivial irreducible module of a finite-dimensional solvable restricted Lie algebra is induced from the onedimensional trivial module of a maximal torus. As a consequence, the number of the isomorphism classes of irreducible modules with a fixed p-character for a finite-dimensional solvable restricted Lie algebra L is bounded above by $p^{MT(L)}$, where MT(L) denotes the maximal dimension of a torus in L. Finally, it is proved that in characteristic p > 3 the projective cover of the trivial irreducible L-module is induced from the one-dimensional trivial module of a torus of maximal dimension, only if L is solvable.


Autore Pugliese

Tutti gli autori

  • Feldvoss J. , Siciliano S. , Weigel T.

Titolo volume/Rivista

TRANSFORMATION GROUPS


Anno di pubblicazione

2016

ISSN

1083-4362

ISBN

Non Disponibile


Numero di citazioni Wos

1

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

3

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile