Quantum corrections to short folded superstring in AdS_3 x S^3 x M^4

Abstract

We consider integrable superstring theory on AdS3 × S3 × M4 where M4 = T4 or M4 = S3 × S1 with generic ratio of the radii of the two 3-spheres. We compute the one- loop energy of a short folded string spinning in AdS3 and rotating in S3. The computation is performed by world-sheet small spin perturbation theory as well as by quantizing the classical algebraic curve characterizing the finite-gap equations. The two methods give equal results up to regularization contributions that are under control. One important byproduct of the calculation is the part of the energy which is due to the dressing phase in the Bethe Ansatz. Remarkably, this contribution Edressing turns out to be independent 1 on the radii ratio. In the M4 = T4 limit, we discuss how Edressing relates to a recent 1 proposal for the dressing phase tested in the su(2) sector. We point out some difficulties suggesting that quantization of the AdS3 classical finite-gap equations could be subtler than the easier AdS5 × S5 case.


Autore Pugliese

Tutti gli autori

  • M. Beccaria , G. Macorini

Titolo volume/Rivista

JOURNAL OF HIGH ENERGY PHYSICS


Anno di pubblicazione

2013

ISSN

1126-6708

ISBN

Non Disponibile


Numero di citazioni Wos

16

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

16

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile