Preserving invariance properties of reaction–diffusion systems on stationary surfaces
Abstract
We propose and analyse a lumped surface finite element method for the numerical approximation of reaction–diffusion systems on stationary compact surfaces in R3. The proposed method preserves the invariant regions of the continuous problem under discretization and, in the special case of scalar equations, it preserves the maximum principle. On the application of a fully discrete scheme using the implicit–explicit Euler method in time, we prove that invariant regions of the continuous problem are preserved (i) at the spatially discrete level with no restriction on the meshsize and (ii) at the fully discrete level under a timestep restriction. We further prove optimal error bounds for the semidiscrete and fully discrete methods, that is, the convergence rates are quadratic in the meshsize and linear in the timestep. Numerical experiments are provided to support the theoretical findings.We provide examples in which, in the absence of lumping, the numerical solution violates the invariant region leading to blow-up.
Autore Pugliese
Tutti gli autori
-
M.Frittelli , A.Madzvamuse , I. Sgura , C. Venkataraman
Titolo volume/Rivista
IMA JOURNAL OF NUMERICAL ANALYSIS
Anno di pubblicazione
2017
ISSN
0272-4979
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social