Photovoltaic power forecasting using statistical methods: impact of weather data
Abstract
An important issue for the growth and management of grid-connected photovoltaic (PV) systems is the possibility to forecast the power output over different horizons. In this work, statistical methods based on multiregression analysis and the Elmann artificial neural network (ANN) have been developed in order to predict power production of a 960 kWP gridconnected PV plant installed in Italy. Different combinations of the time series of produced PV power and measured meteorological variables were used as inputs of the ANN. Several statistical error measures are evaluated to estimate the accuracy of the forecasting methods. A decomposition of the standard deviation error has been carried out to identify the amplitude and phase error. The skewness and kurtosis parameters allow a detailed analysis of the distribution error.
Autore Pugliese
Tutti gli autori
-
M.G. De Giorgi , M. Malvoni , P.M. Congedo
Titolo volume/Rivista
IET SCIENCE, MEASUREMENT & TECHNOLOGY
Anno di pubblicazione
2014
ISSN
1751-8822
ISBN
Non Disponibile
Numero di citazioni Wos
33
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
42
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social