Particulate random composites homogenized as micropolar materials
Abstract
Many composite materials, widely used in different engineering fields, are characterized by random distributions of the constituents. Examples range from polycrystals to concrete and masonry-like materials. In this work we propose a statistically-based scale-dependent multiscale procedure aimed at the simulation of the mechanical behavior of a two-phase particle random medium and at the estimation of the elastic moduli of the energy-equivalent homogeneous micropolar continuum. The key idea of the procedure is to approach the so-called Representative Volume Element (RVE) using finite-size scaling of Statistical Volume Elements (SVEs). To this end properly defined Dirichlet, Neumann, and periodic-type non-classical boundary value problems are numerically solved on the SVEs defining hierarchies of constitutive bounds. The results of the performed numerical simulations point out the importance of accounting for spatial randomness as well as the additional degrees of freedom of the continuum with rigid local structure.
Autore Pugliese
Tutti gli autori
-
Trovalusci P. , De Bellis M. L. , Ostoja-Starzewski M. , Murrali A.
Titolo volume/Rivista
MECCANICA
Anno di pubblicazione
2014
ISSN
0025-6455
ISBN
Non Disponibile
Numero di citazioni Wos
15
Ultimo Aggiornamento Citazioni
25/04/2018
Numero di citazioni Scopus
16
Ultimo Aggiornamento Citazioni
24/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social