On the simplest fractional-order memristor-based chaotic system

Abstract

In 1695, G. Leibniz laid the foundations of fractional calculus, but mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the existence of a fourth circuit element, called memristor, but Williams’s group of HP Labs realized it only 37 years later. By looking at these interdisciplinary and promising research areas, in this paper, a novel fractional-order system including a memristor is introduced. In particular, chaotic behaviors in the simplest fractional-order memristor-based system are shown. Numerical integrations (via a predictor–corrector method) and stability analysis of the system equilibria are carried out, with the aim to show that chaos can be found when the order of the derivative is 0.965. Finally, the presence of chaos is confirmed by the application of the recently introduced 0-1 test.


Tutti gli autori

  • D. Cafagna , G. Grassi

Titolo volume/Rivista

NONLINEAR DYNAMICS


Anno di pubblicazione

2012

ISSN

0924-090X

ISBN

Non Disponibile


Numero di citazioni Wos

53

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

58

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile