On the simplest fractional-order memristor-based chaotic system
Abstract
In 1695, G. Leibniz laid the foundations of fractional calculus, but mathematicians revived it only 300 years later. In 1971, L.O. Chua postulated the existence of a fourth circuit element, called memristor, but Williams’s group of HP Labs realized it only 37 years later. By looking at these interdisciplinary and promising research areas, in this paper, a novel fractional-order system including a memristor is introduced. In particular, chaotic behaviors in the simplest fractional-order memristor-based system are shown. Numerical integrations (via a predictor–corrector method) and stability analysis of the system equilibria are carried out, with the aim to show that chaos can be found when the order of the derivative is 0.965. Finally, the presence of chaos is confirmed by the application of the recently introduced 0-1 test.
Autore Pugliese
Tutti gli autori
-
D. Cafagna , G. Grassi
Titolo volume/Rivista
NONLINEAR DYNAMICS
Anno di pubblicazione
2012
ISSN
0924-090X
ISBN
Non Disponibile
Numero di citazioni Wos
53
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
58
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social