On the reachability and observability of path and cycle graphs
Abstract
In this paper we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. Specifically, we provide necessary and sufficient conditions, based on simple rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: (i) a path graph is reachable (observable) from any single node if and only if the number of nodes of the graph is a power of two, n = 2^i; i in N, and (ii) a cycle is reachable (observable) from any pair of nodes if and only if n is a prime number. For any set of control (observation) nodes, we provide a closed form expression for the (unreachable) unobservable eigenvalues and for the eigenvectors of the (unreachable) unobservable subsystem.
Autore Pugliese
Tutti gli autori
-
Parlangeli G. , Notarstefano G.
Titolo volume/Rivista
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Anno di pubblicazione
2012
ISSN
0018-9286
ISBN
Non Disponibile
Numero di citazioni Wos
71
Ultimo Aggiornamento Citazioni
27/04/2018
Numero di citazioni Scopus
88
Ultimo Aggiornamento Citazioni
26/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social