On the mathematical and geometrical structure of the determining equations for shear waves in nonlinear isotropic incompressible elastodynamics
Abstract
Using the theory of $1+1$ hyperbolic systems we put in perspective the mathematical and geometrical structure of the celebrated circularly polarized waves solutions for isotropic hyperelastic materials determined by Carroll in Acta Mechanica 3 (1967) 167--181. We show that a natural generalization of this class of solutions yields an infinite family of emph{linear} solutions for the equations of isotropic elastodynamics. Moreover, we determine a huge class of hyperbolic partial differential equations having the same property of the shear wave system. Restricting the attention to the usual first order asymptotic approximation of the equations determining transverse waves we provide the complete integration of this system using generalized symmetries.
Autore Pugliese
Tutti gli autori
-
G. Saccomandi , R. Vitolo
Titolo volume/Rivista
JOURNAL OF MATHEMATICAL PHYSICS
Anno di pubblicazione
2014
ISSN
0022-2488
ISBN
Non Disponibile
Numero di citazioni Wos
6
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
6
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social