On the characterization of infinitesimal symmetries of the relativistic phase space

Abstract

The phase space of relativistic particle mechanics is defined as the first jet space of motions regarded as time-like one-dimensional submanifolds of spacetime. A Lorentzian metric and an electromagnetic 2-form define naturally a generalized contact structure on the odd-dimensional phase space. In the paper, infinitesimal symmetries of the phase structures are characterized. More precisely, it is proved that all phase infinitesimal symmetries are special Hamiltonian lifts of distinguished conserved quantities on the phase space. It is proved that generators of infinitesimal symmetries constitute a Lie algebra with respect to a special bracket. A momentum map for groups of symmetries of the geometric structures is provided.


Autore Pugliese

Tutti gli autori

  • J. Janyska , R. Vitolo

Titolo volume/Rivista

JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL


Anno di pubblicazione

2012

ISSN

1751-8113

ISBN

Non Disponibile


Numero di citazioni Wos

4

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

6

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile