On strict positive definiteness of product and product–sum covariance models
Abstract
Although positive definiteness is a sufficient condition for a function to be a covariance, the stronger strict positive definiteness is important for many applications, especially in spatial statistics, since it ensures that the kriging equations have a unique solution. In particular, spatial–temporal prediction has received a lot of attention, hence strictly positive definite spatial–temporal covariance models (or equivalently strictly conditionally negative definite variogram models) are needed. In this paper the necessary and sufficient condition for the product and the product–sum space–time covariance models to be strictly positive definite (or the variogram function to be strictly conditionally negative definite) is given. In addition it is shown that an example appeared in the recent literature which purports to show that product–sum covariance functions may be only semi-definite is itself invalid. Strict positive definiteness of the sum of products model is also discussed.
Autore Pugliese
Tutti gli autori
-
DE IACO S. , MYERS D. E. , POSA D.
Titolo volume/Rivista
JOURNAL OF STATISTICAL PLANNING AND INFERENCE
Anno di pubblicazione
2011
ISSN
0378-3758
ISBN
Non Disponibile
Numero di citazioni Wos
9
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
14
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social