On fixed points of central automorphisms of finite-by-nilpotent groups
Abstract
The central kernel K(G) of a group G is the subgroup consisting of all elements fixed by every central automorphism of G. It is proved here that if G is a finite-by- nilpotent group whose central kernel has finite index, the G is finite over the centre, and the elements of finite order of G form a finite subgroup; in particular G is finite, provided that it is periodic. Moreover, if G is a periodic finite-b-nilpotent group and G/K(G) is a Cernikov group, it turns out that G itself is a Cernikov group.
Autore Pugliese
Tutti gli autori
-
F. Catino , F. de Giovanni , M.M. Miccoli
Titolo volume/Rivista
JOURNAL OF ALGEBRA
Anno di pubblicazione
2014
ISSN
0021-8693
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social