NSCT Based Multispectral Medical Image Fusion Model
Abstract
Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-subsampled Contourlet Transform (NSCT) based multispectral image fusion model which integrates Principal Component Analysis (PCA), Phase congruency, directive contrast and entropy. The proposed methodology involves color transformation of input multispectral image. Two different fusion rules are then applied to the high-pass and low-pass subbands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).
Autore Pugliese
Tutti gli autori
-
Bhateja V. , Srivastava A. , Moin A. , Lay Ekuakille A.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social