New properties of the Fučík spectrum
Abstract
In this Note we present some results on the Fučík spectrum for the Laplace operator, that give new information on its structure. In particular, these results show that, if Ω is a bounded domain of R^N with N>1, then the Fučík spectrum has infinitely many curves asymptotic to the lines {λ_1}×R and R×{λ_1}, where λ_1 denotes the first eigenvalue of the operator -Delta in H_0^1(Ω). Notice that the situation is quite different in the case N=1; in fact, in this case, the Fučík spectrum may be obtained by direct computation and one can verify that it includes only two curves asymptotic to these lines. The method we use for the proof is completely variational.
Autore Pugliese
Tutti gli autori
-
R. Molle , D. Passaseo
Titolo volume/Rivista
COMPTES RENDUS MATHEMATIQUE
Anno di pubblicazione
2013
ISSN
1631-073X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social