Multitasking associative networks
Abstract
We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzmann machine and we show its thermodynamical equivalence to an associative working memory able to retrieve several patterns in parallel without falling into spurious states typical of classical neural networks. We focus on systems processing in parallel a finite (up to logarithmic growth in the volume) amount of patterns, mirroring the low-level storage of standard Amit-Gutfreund-Sompolinsky theory. Results obtained through statistical mechanics, the signal-to-noise technique, and Monte Carlo simulations are overall in perfect agreement and carry interesting biological insights. Indeed, these associative networks pave new perspectives in the understanding of multitasking features expressed by complex systems, e.g., neural and immune networks.
Autore Pugliese
Tutti gli autori
-
Agliari E. , Barra A. , Galluzzi A. , Guerra F. , Moauro F.
Titolo volume/Rivista
PHYSICAL REVIEW LETTERS
Anno di pubblicazione
2012
ISSN
0031-9007
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social