Multiobjective optimization of the breathing system of an aircraft two stroke supercharged Diesel engine
Abstract
One of the factors limiting the utilization of piston internal combustion engines for aircraft propulsion is the performance decrease increasing the altitude of operation. This is due to the negative effect of air density reduction increasing the altitude on cylinder filling. A solution to this problem is represented by the engine supercharging. Unfortunately, in two stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency. With the aim of guaranteeing an optimal balance between engine performance and specific consumption, an engine breathing system optimization is needed. In this work, the results obtained running a multi-objective optimization procedure aiming at performance increase and fuel consumption reduction of an aircraft two stroke supercharged diesel engine at various altitudes are analyzed. During the optimization procedure, several geometric parameters of the intake and exhaust systems as well as geometric and operating engine parameters have been varied. Then, a multi-objective optimization algorithm based on genetic algorithms has been run to obtain the configurations optimizing the engine performance at Sea Level (take-off conditions) and fuel consumption at 10680 m (cruise conditions).
Autore Pugliese
Tutti gli autori
-
A.P. Carlucci , A. Ficarella , D. Laforgia , G. Trullo
Titolo volume/Rivista
ENERGY PROCEDIA
Anno di pubblicazione
2015
ISSN
1876-6102
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
1
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social