Multimodal Medical Image Sensor Fusion Framework Using Cascade of Wavelet and Contourlet Transform Domains

Abstract

Multimodal medical image fusion is effectuated to minimize the redundancy while augmenting the necessary information from the input images acquired using different medical imaging sensors. The sole aim is to yield a single fused image, which could be more informative for an efficient clinical analysis. This paper presents a two-stage multimodal fusion framework using the cascaded combination of stationary wavelet transform (SWT) and non sub-sampled Contourlet transform (NSCT) domains for images acquired using two distinct medical imaging sensor modalities (i.e., magnetic resonance imaging and computed tomography scan). The major advantage of using a cascaded combination of SWT and NSCT is to improve upon the shift variance, directionality, and phase information in the finally fused image. The first stage employs a principal component analysis algorithm in SWT domain to minimize the redundancy. Maximum fusion rule is then applied in NSCT domain at second stage to enhance the contrast of the diagnostic features. A quantitative analysis of fused images is carried out using dedicated fusion metrics. The fusion responses of the proposed approach are also compared with other state-of-the-art fusion approaches; depicting the superiority of the obtained fusion results.


Autore Pugliese

Tutti gli autori

  • Bhateja V. , Patel H. , Krishn A. , Sahu A. , Lay-Ekuakille A.

Titolo volume/Rivista

IEEE SENSORS JOURNAL


Anno di pubblicazione

2015

ISSN

1530-437X

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

43

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile