Model-based automatic neighborhood design by unsupervised learning
Abstract
The definition of a suitable neighborhood structure on the solution space is a key step when designing a heuristic for Mixed Integer Programming (MIP). In this paper, we move on from a MIP compact formulation and show how to take advantage of its features to automatically design efficient neighborhoods, without any human analysis. In particular, we use unsupervised learning to automatically identify "good" regions of the search space "around" a given feasible solution. Computational results on compact formulations of three well-known combinatorial optimization problems show that, on large instances, the neighborhoods constructed by our procedure outperform state-of-the-art domain-independent neighborhoods.
Autore Pugliese
Tutti gli autori
-
G. Ghiani , G. Laporte , E. Manni
Titolo volume/Rivista
COMPUTERS & OPERATIONS RESEARCH
Anno di pubblicazione
2015
ISSN
0305-0548
ISBN
Non Disponibile
Numero di citazioni Wos
3
Ultimo Aggiornamento Citazioni
27/04/2018
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social