Metrics of Kaluza-Klein type on the anti-de Sitter space H13
Abstract
We introduce and study a new family of pseudo-Riemannian metrics on the anti-de Sitter three-space $H^3_1$. These metrics will be called “of Kaluza-Klein type” , as they are induced in a natural way by the corresponding metrics defined on the tangent sphere bundle $T_1 H_2(κ)$. For any choice of three real parameters λ,μ, ν neq 0, the pseudo-Riemannian manifold $(H^3_1, g_λμν)$ is homogeneous. Moreover, we shall introduce and study some natural almost contact and paracontact structures (ϕ, ξ, η), compatible with $g_λμν$ , such that (ϕ, ξ, η, g_λμν) is a homogeneous almost contact (respectively, paracontact) metric structure. These structures will be then used to show the existence of a three-parameter family of homogeneous metric mixed 3-structures on the anti-de Sitter three-space.
Autore Pugliese
Tutti gli autori
-
G. Calvaruso , D. Perrone
Titolo volume/Rivista
MATHEMATISCHE NACHRICHTEN
Anno di pubblicazione
2014
ISSN
0025-584X
ISBN
Non Disponibile
Numero di citazioni Wos
4
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social