Many-objective optimization of mission and hybrid electric power system of an unmanned aircraft

Abstract

This work aims at comparing different many-objective techniques for the optimization of mission and parallel hybrid electric power system for aircraft. In particular, this work considers, as input of the optimization, the specification of the flight mission, the size of the main components and the energy management strategy for a Medium Altitude Long Endurance Unmanned Aerial Vehicle (MALE-UAV). The goals of the optimization are maximization of electric endurance, minimization of overall fuel consumption, improvement of take-off performance and minimization of the additional volume of the hybrid electric solution with respect to the initial conventional power system. The optimization methods considered in this study are those included in the ModeFRONTIER optimization environment: NSGA-II, MOGA-II, MOSA (Multi Objective Simulated Annealing algorithm) and Evolutionary Strategy of type (µ/ρ + λ)-ES. Initially, appropriate metrics are used to compare the proposed methods in a simplified problem with only two objective functions. Then a complete optimization is performed, in order to underline the degradation of the proposed optimization methods as the size of the problem increases and to define the best method according to the number of objective functions.


Tutti gli autori

  • Donateo T. , De Pascalis C. , Ficarella A.

Titolo volume/Rivista

LECTURE NOTES IN COMPUTER SCIENCE


Anno di pubblicazione

2018

ISSN

0302-9743

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile