Lumped finite elements for reaction–cross-diffusion systems on stationary surfaces

Abstract

Weconsider a lumped surface finite element method (LSFEM) for the spatial approximation of reaction–diffusion equations on closed compact surfaces in R3 in the presence of crossdiffusion. We provide a fully-discrete scheme by applying the Implicit–Explicit (IMEX) Euler method. We provide sufficient conditions for the existence of polytopal invariant regions for the numerical solution after spatial and full discretisations. Furthermore,weprove optimal error bounds for the semi- and fully-discrete methods, that is the convergence rates are quadratic in the meshsize and linear in the timestep. To support our theoretical findings, we provide two numerical tests. The first test confirms that in the absence of lumping numerical solutions violate the invariant region leading to blow-up due to the nature of the kinetics. The second experiment is an example of Turing pattern formation in the presence of cross-diffusion on the sphere.


Autore Pugliese

Tutti gli autori

  • M.Frittelli , A.Madzvamuse , I. Sgura , C. Venkataraman

Titolo volume/Rivista

COMPUTERS & MATHEMATICS WITH APPLICATIONS


Anno di pubblicazione

2017

ISSN

0898-1221

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

0

Ultimo Aggiornamento Citazioni

23/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile