Lumped finite elements for reaction–cross-diffusion systems on stationary surfaces
Abstract
Weconsider a lumped surface finite element method (LSFEM) for the spatial approximation of reaction–diffusion equations on closed compact surfaces in R3 in the presence of crossdiffusion. We provide a fully-discrete scheme by applying the Implicit–Explicit (IMEX) Euler method. We provide sufficient conditions for the existence of polytopal invariant regions for the numerical solution after spatial and full discretisations. Furthermore,weprove optimal error bounds for the semi- and fully-discrete methods, that is the convergence rates are quadratic in the meshsize and linear in the timestep. To support our theoretical findings, we provide two numerical tests. The first test confirms that in the absence of lumping numerical solutions violate the invariant region leading to blow-up due to the nature of the kinetics. The second experiment is an example of Turing pattern formation in the presence of cross-diffusion on the sphere.
Autore Pugliese
Tutti gli autori
-
M.Frittelli , A.Madzvamuse , I. Sgura , C. Venkataraman
Titolo volume/Rivista
COMPUTERS & MATHEMATICS WITH APPLICATIONS
Anno di pubblicazione
2017
ISSN
0898-1221
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
23/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social