Lie-point symmetries of the discrete Liouville equation
Abstract
The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup ##IMG## [http://ej.iop.org/images/1751-8121/48/2/025204/jpa504755ieqn1.gif] {$S{{L}_{x}}(2,mathbb{R})otimes S{{L}_{y}}(2,mathbb{R})$} . The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.
Autore Pugliese
Tutti gli autori
-
D Levi , L Martina , P Winternitz
Titolo volume/Rivista
JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL
Anno di pubblicazione
2015
ISSN
1751-8113
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social