Lie-point symmetries of the discrete Liouville equation

Abstract

The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup ##IMG## [http://ej.iop.org/images/1751-8121/48/2/025204/jpa504755ieqn1.gif] {$S{{L}_{x}}(2,mathbb{R})otimes S{{L}_{y}}(2,mathbb{R})$} . The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.


Autore Pugliese

Tutti gli autori

  • D Levi , L Martina , P Winternitz

Titolo volume/Rivista

JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL


Anno di pubblicazione

2015

ISSN

1751-8113

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile