Lie point symmetries and reductions of one-dimensional equations describing perfect Korteweg-type nematic fluids

Abstract

A system of partial differential equations, describing one-dimensional nematic liquid crystals is studied by Lie group analysis. These equations are the Euler–Lagrange equations associated with a free energy functional that depends on the mass density and the gradient of the mass density. The group analysis is an algorithmic approach that allows us to show all the point symmetries of the system, to determine all possible symmetry reductions and, finally, to obtain invariant solutions in the form of travelling waves. The Hamiltonian formulation of the dynamical equations is also considered and the conservation laws found by exploiting the local symmetries.


Autore Pugliese

Tutti gli autori

  • G. De Matteis , L. Martina

Titolo volume/Rivista

JOURNAL OF MATHEMATICAL PHYSICS


Anno di pubblicazione

2012

ISSN

0022-2488

ISBN

Non Disponibile


Numero di citazioni Wos

5

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

5

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile