Lie point symmetries and reductions of one-dimensional equations describing perfect Korteweg-type nematic fluids
Abstract
A system of partial differential equations, describing one-dimensional nematic liquid crystals is studied by Lie group analysis. These equations are the Euler–Lagrange equations associated with a free energy functional that depends on the mass density and the gradient of the mass density. The group analysis is an algorithmic approach that allows us to show all the point symmetries of the system, to determine all possible symmetry reductions and, finally, to obtain invariant solutions in the form of travelling waves. The Hamiltonian formulation of the dynamical equations is also considered and the conservation laws found by exploiting the local symmetries.
Autore Pugliese
Tutti gli autori
-
G. De Matteis , L. Martina
Titolo volume/Rivista
JOURNAL OF MATHEMATICAL PHYSICS
Anno di pubblicazione
2012
ISSN
0022-2488
ISBN
Non Disponibile
Numero di citazioni Wos
5
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
5
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social