Inverse Scattering Transform for the Focusing Nonlinear Schrödinger Equation with a One-Sided Non-Zero Boundary Condition
Abstract
The inverse scattering transform (IST) as a tool to solve the initial-value problem for the focusing nonlinear Schrodinger (NLS) equation with one-sided non-zero boundary value as x → +∞ is presented. The direct problem is shown to be well-defined for NLS solutions q(x, t) such that [q(x, t) − qr(t)ϑ(x)] ∈ L1,1(R) [here and in the following ϑ(x) denotes the Heaviside function] with respect to x ∈ R for all t ≥ 0, for which analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated both via (left and right) Marchenko integral equations and as a Riemann-Hilbert problem on a single sheet of the scattering variables $λ_r = sqrt{k^2 + A^2_r}$, where k is the usual complex scattering parameter in the IST. The direct and inverse problems are also formulated in terms of a suitable uniformization variable that maps the two-sheeted Riemann surface for k into a single copy of the complex plane. The time evolution of the scattering coefficients is then derived, showing that, unlike the case of solutions with the same amplitude as x → ±∞, here both reflection and transmission coefficients have a nontrivial (although explicit) time dependence. The results presented in this paper will be instrumental for the investigation of the long-time asymptotic behavior of physically relevant NLS solutions with nontrivial boundary conditions, either via the nonlinear steepest descent method on the Riemann-Hilbert problem, or via matched asymptotic expansions on the Marchenko integral equations.
Autore Pugliese
Tutti gli autori
-
Prinari B. , Vitale F.
Titolo volume/Rivista
CONTEMPORARY MATHEMATICS
Anno di pubblicazione
2015
ISSN
0271-4132
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social