Influence of variable substrate geometry on wettability and cellular responses
Abstract
In this report, we evaluate the impact of a systematic change to the extracellular environment on cell morphology and functionality by combining the inherent properties of biocompatible polymers such as polydimethylsiloxane and polycaprolactone with a specific surface response. By microstructuring pillars and pits on the substrates, varying spacing and height of the structures, we investigate the role of topography in fibroblast cell adhesion and viability. The change of wetting behaviour was tailored and evaluated in terms of contact angle measurements. It was shown that the range of micro-scale physical cues at the interface between the cells and the surrounding environment affects cell shape and migrations, indicating a tendency to respond differently to higher features of the micro-scale. We found that surface topography seems dominant over material wettability, fibroblasts responded to variations in topography by altering morphology and migrating along the direction of spacing among the features biased by the height of structures and not by the material. It is therefore possible to selectively influence either cell adhesion or morphology by choosing adequate topography of the surface. This work can impact in the design of biomaterials and can be applied to implanted biomedical devices, tissue engineering scaffolds and lab on chip devices.
Autore Pugliese
Tutti gli autori
-
Cortese B. , Riehle M. O. , D'Amone S. , Gigli G.
Titolo volume/Rivista
JOURNAL OF COLLOID AND INTERFACE SCIENCE
Anno di pubblicazione
2013
ISSN
0021-9797
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social