Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients
Abstract
In this paper the equation -Delta u+a(x)u=|u|^{p-1}u in R^N is considered, when N ge 2, p > 1 and p < N+2/N-2 if N ge 3. Assuming that the potential a(x) is a positive function belonging to L^{N/2}_loc (R^N) such that a(x)to a_infty > 0, as |x|toinfty, and satisfies slow decay assumptions but does not need to fulfill any symmetry property, the existence of infinitely many positive solutions, by purely variational methods, is proved. The shape of the solutions is described as is, and furthermore, their asymptotic behavior when |a(x)-a_infty|_{L^{N/2}_{loc}}to 0.
Autore Pugliese
Tutti gli autori
-
G. Cerami , D. Passaseo , S.Solimini
Titolo volume/Rivista
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS
Anno di pubblicazione
2013
ISSN
0010-3640
ISBN
Non Disponibile
Numero di citazioni Wos
22
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
24
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social