Harmonic sections of tangent bundles equipped with Riemannian $g$-natural metrics

Abstract

Let $(M,g)$ be a Riemannian manifold. When $M$ is compact and the tangent bundle $TM$ is equipped with the Sasaki metric $g^s$, parallel vector fields are the only harmonic maps from $(M,g)$ to $(TM,g^s)$. The Sasaki metric, and other well-known Riemannian metrics on $TM$, are particular examples of $g$-natural metrics. We equip $TM$ with an arbitrary $g$-natural Riemannian metric $G$, and investigate the harmonicity properties of a vector field $V$ of $M$, thought as a map from $(M,g)$ to $(TM,G)$. We then apply this study to the Reeb vector field and, in particular, to Hopf vector fields on odd-dimensional spheres.


Tutti gli autori

  • G.Calvaruso , D. Perrone , M.T.K. Abbassi

Titolo volume/Rivista

QUARTERLY JOURNAL OF MATHEMATICS


Anno di pubblicazione

2011

ISSN

0033-5606

ISBN

Non Disponibile


Numero di citazioni Wos

6

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

11

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile