Harmonic morphisms and Riemannian geometry of tangent bundles

Abstract

Let (TM, G) and (T1M, ˜G ) respectively denote the tangent bundle and the unit tangent sphere bundle of a Riemannian manifold (M, g), equipped with arbitraryRiemannian g-natural metrics. After studying the geometry of the canonical projections π : (TM, G) → (M, g) and π1 : (T1M, ˜G) → (M, g), we give necessary and sufficient conditions for π and π1 to be harmonic morphisms. Some relevant classes of Riemannian g-natural metrics will be characterized in terms of harmonicity properties of the canonical projections. Moreover, we study the harmonicity of the canonical projection : (TM −{0}, G) → (T1M, ˜G ) with respect to Riemannian g-natural metrics G, ˜G of Kaluza–Klein type.


Tutti gli autori

  • G. Calvaruso , D. Perrone

Titolo volume/Rivista

ANNALS OF GLOBAL ANALYSIS AND GEOMETRY


Anno di pubblicazione

2011

ISSN

0232-704X

ISBN

Non Disponibile


Numero di citazioni Wos

4

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

4

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile