Fréchet spaces with no infinite-dimensional Banach quotients
Abstract
We exhibit examples of Fréchet Montel spaces $E$ which have a non-reflexive Fréchet quotient but such that every Banach quotient is finite dimensional. The construction uses a method developed by Albanese and Moscatelli and requires new ingredients. Some of the main steps in the proof are presented in Section 2, they are of independent interest and show for example that the canonical inclusion between James spaces $J_p subset J_q, 1 < p < q < infty,$ is strictly cosingular. This result requires a careful analysis of the block basic sequences of the canonical basis of the dual $J'_p$ of the James space $J_p$, and permits us to show that the Fréchet space $J_{p^+} = cap_{q>p}J_q$ has no infinite-dimensional Banach quotients. Plichko and Maslyuchenko had proved that it has no infinite-dimensional Banach subspaces.
Autore Pugliese
Tutti gli autori
-
A. A. Albanese , J. Bonet
Titolo volume/Rivista
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Anno di pubblicazione
2012
ISSN
0022-247X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social