Flame structure and chemiluminescence emissions of inverse diffusion flames under sinusoidally driven plasma discharges
Abstract
Reduction of nitric oxides (NOx) in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD) on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux), but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device) CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.
Autore Pugliese
Tutti gli autori
-
De Giorgi M.G. , Sciolti A. , Campilongo S. , Ficarella A.
Titolo volume/Rivista
ENERGIES
Anno di pubblicazione
2017
ISSN
1996-1073
ISBN
Non Disponibile
Numero di citazioni Wos
1
Ultimo Aggiornamento Citazioni
27/04/2018
Numero di citazioni Scopus
1
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social