Empirical Mode Decomposition vs. Wavelet Decomposition for the extraction of respiratory signal from single-channel ECG: a comparison
Abstract
The respiratory signal can be accurately evaluated by single-channel electrocardiogram (ECG) processing, as shown in recent literature. Indirect methods to derive the respiratory signal from ECG can benefit from a simultaneous study of both respiratory and cardiac activities. These methods lead to major advantages such as low cost, high efficiency, and continuous noninvasive respiratory monitoring. The aim of this paper is to reconstruct the waveform of the respiratory signal by processing single-channel ECG. To achieve these goals, two techniques of decomposition of the ECG signal into suitable bases of functions are proposed, such as the empirical mode decomposition (EMD) and the wavelet analysis. The results highlight the main differences between them in terms of both theoretical foundations, and performance achieved by applying these algorithms to extract the respiratory waveform shape from single-channel ECG are presented. The results also show that both algorithms are able to reconstruct the respiratory waveform, although the EMD is able to break down the original signal without a preselected basis function, as it is necessary for wavelet decomposition. The EMD outperforms the wavelet approach. Some results on experimental data are presented.
Autore Pugliese
Tutti gli autori
-
D. LABATE , F. LA FORESTA , G. OCCHIUTO , F.C. MORABITO , A. LAY EKUAKILLE , P. VERGALLO
Titolo volume/Rivista
IEEE SENSORS JOURNAL
Anno di pubblicazione
2013
ISSN
1530-437X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
56
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social