Elliptic equations with jumping nonlinearities involving high eigenvalues
Abstract
We present some multiplicity results concerning semilinear elliptic Dirichlet problems with jumping nonlinearities where the jumping condition involves a set of high eigenvalues not including the first one. Using a variational method we show that the number of solutions may be arbitrarily large provided the number of jumped eigenvalues is large enough. Indeed, we prove that for every positive integer k there exists a positive integer n(k) such that, if the number of jumped eigenvalues is greater than n(k), then the problem has at least a solution which presents k peaks. Moreover, we describe the asymptotic behaviour of the solutions as the number of jumped eigenvalues tends to infinity; in particular, we analyse some concentration phenomena of the peaks (near points or suitable manifolds), we describe the asymptotic profile of the rescaled peaks, etc …
Autore Pugliese
Tutti gli autori
-
R. Molle , D. Passaseo
Titolo volume/Rivista
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Anno di pubblicazione
2014
ISSN
0944-2669
ISBN
Non Disponibile
Numero di citazioni Wos
5
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
4
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social