Efficient Signal Conditioning techniques for Brain activity in Remote Health Monitoring Network

Abstract

This paper proposes several efficient and less complex signal conditioning algorithms for brain signal enhancement in remote healthcare monitoring applications. In clinical environment during electroencephalogram (EEG) recording, several artifacts encounter and mask tiny features underlying brain wave activity. Especially in remote clinical monitoring, low computational complexity filters are desirable. Hence, in our paper, we propose various efficient and computationally simple adaptive noise cancelers for EEG enhancement. These schemes mostly employ simple addition and shift operations, and achieve considerable speed over the other conventional realizations. We have tested the proposed implementations on real brain waves recorded using emotive EEG system. Our experiments show that the proposed realization gives better performance compared with existing realizations in terms of signal to noise ratio, computational complexity, convergence rate, excess mean square error, misadjustment, and coherence.


Autore Pugliese

Tutti gli autori

  • G.V.S.Karthik , Sk. Yasmin Fathima , Muhammad Zia Ur Rahman , Sk.Rafi Ahamed , A. Lay-Ekuakille

Titolo volume/Rivista

IEEE SENSORS JOURNAL


Anno di pubblicazione

2013

ISSN

1530-437X

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

34

Ultimo Aggiornamento Citazioni

28/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile