Distribution of first-return times in correlated stationary signals
Abstract
We present an analytical expression for the first return time (FRT) probability density function of a stationary correlated signal. Precisely, we start by considering a stationary discrete-time Ornstein-Uhlenbeck (OU) process with exponenial decaying correlation function. The first return time distribution for this process is derived by adopting a well known formalism typically used in the study of the FRT statistics for non-stationary diffusive processes. Then, by a subordination approach, we treat the case of a stationary process with power law tail correlation function and diverging correlation time. We numerically test our findings, obtaining in both cases a good agreement with the analytical results. We notice that neither in the standard OU nor in the subordinated case a simple form of waiting time statistics like stretched-exponential or similar can be obtained while it is apparent that long time transient may shadow the final asymptotic behavior.
Autore Pugliese
Tutti gli autori
-
L. Palatella , C. Pennetta
Titolo volume/Rivista
PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
Anno di pubblicazione
2011
ISSN
1539-3755
ISBN
Non Disponibile
Numero di citazioni Wos
5
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
6
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social