Distributed abstract optimization via constraints consensus: theory and applications
Abstract
Distributed abstract programs are a novel class of distributed optimization problems where (i) the number of variables is much smaller than the number of constraints and (ii) each constraint is associated to a network node. Abstract optimization programs are a generalization of linear programs that captures numerous geometric optimization problems. We propose novel constraints consensus algorithms for distributed abstract programs with guaranteed finite-time convergence to a global optimum. The algorithms rely upon solving local abstract programs and exchanging the solutions among neighboring processors. The proposed algorithms are appropriate for networks with weak time-dependent connectivity requirements and tight memory constraints. We show how the constraints consensus algorithms may be applied to suitable target localization and formation control problems.
Autore Pugliese
Tutti gli autori
-
G. Notarstefano , F. Bullo
Titolo volume/Rivista
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Anno di pubblicazione
2011
ISSN
0018-9286
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
36
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social