Dissipative operators and additive perturbations in locally convex spaces
Abstract
Let $(A, D(A))$ be a densely defined operator on a Banach space $X$. Characterizations of when $(A, D(A))$ generates a $C_0$-semigroup on $X$ are known. The famous result of Lumer and Phillips states that it is so if and only if $(A, D(A))$ is dissipative and $rg(lambda I − A) subseteq X$ is dense in $X$ for some $lambda>0$. There exists also a rich amount of Banach space results concerning perturbations of dissipative operators. In a recent paper Tyran–Kaminska provides perturbation criteria of dissipative operators in terms of ergodic properties. These results, and others, are shown to remain valid in the setting of general non-normable locally convex spaces. Applications of the results to concrete examples of operators on function spaces are also presented.
Autore Pugliese
Tutti gli autori
-
A.A. Albanese , D. Jornet
Titolo volume/Rivista
MATHEMATISCHE NACHRICHTEN
Anno di pubblicazione
2016
ISSN
0025-584X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social