Covariance-informed detection in compound-Gaussian clutter without secondary data
Abstract
We consider the problem of detecting a signal of interest in the presence of compound-Gaussian clutter, without resorting to secondary data in order to infer the clutter covariance matrix. Towards this end, we assume that both the texture τ and the speckle covariance matrix R are random variables with some a priori distributions. Marginalizing with respect to these variables, the probability density function of the observed primary data is derived, leading to a closed-form expression for the generalized likelihood ratio test (GLRT) of the problem at hand. Accordingly, the GLRT assuming that τ is deterministic is also derived. The two detectors are assessed through numerical simulations
Autore Pugliese
Tutti gli autori
-
F. Bandiera , O. Besson , G. Ricci
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2010
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
2
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social