Combined Strategy to Realize Efficient Photoelectrodes for Low Temperature Fabrication of Dye Solar Cells
Abstract
We implemented a low-temperature approach to fabricate efficient photoanodes for dye-sensitized solar cells, which combines three different nanoarchitectures, namely, a highly conductive and highly transparent AZO film, a thin TiO2-blocking layer, and a mesoporous TiO2 nanorod-based working electrode. All the components were processed at T 200 degrees C. Both the AZO and the TiO2 blocking layers were deposited by reactive sputtering, whereas the TiO2 nanorods were synthesized by surfactant-assisted wet-chemical routes and processed into photoelectrodes in which the native geometric features assured uniform mesoporous structure with effective nanocrystal interconnectivity suitable to maximize light harvesting and electron diffusion. Because of the optimized structure of the TiO2-blocking/AZO bilayer, and thanks to the good adhesion of the TiO2 nanorods over it, a significant enhancement of the charge recombination resistance was demonstrated, this laying on the basis of the outstanding power conversion efficiency achievable through the use of this photoanode's architecture: a value of 4.6% (N719) was achieved with a 4-mu m-thick electrode processed at T = 200 degrees C. This value noticeably overcomes the current literature limit got on AZO-based cells (N719), which instead use Nb-doped and thicker blocking layers, and thicker nanostructured photoanodes, which have been even sintered at higher temperatures (450-500 degrees C).
Autore Pugliese
Tutti gli autori
-
Alberti A. , De Marco L. , Pellegrino G. , Condorelli G. G. , Giannuzzi R. , Scarfiello R. , Manca M. , Spinella C. , Gigli G. , La Magna A.
Titolo volume/Rivista
ACS APPLIED MATERIALS & INTERFACES
Anno di pubblicazione
2014
ISSN
1944-8244
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social