Characterizing Fréchet–Schwartz spaces via power bounded operators
Abstract
We characterize Köthe echelon spaces (and, more generally, those Fréchet spaces with an unconditional basis) which are Schwartz, in terms of the convergence of the Cesàro means of power bounded operators defined on them. This complements similar known characterizations of reflexive and of Fréchet–Montel spaces with a basis. Every strongly convergent sequence of continuous linear operators on a Fréchet–Schwartz space does so in a special way. We single out this type of “rapid convergence” for a sequence of operators and study its relationship to the structure of the underlying space. Its relevance for Schauder decompositions and the connection to mean ergodic operators on Fréchet– Schwartz spaces is also investigated.
Autore Pugliese
Tutti gli autori
-
A.A. Albanese , J. Bonet , W.J. Ricker
Titolo volume/Rivista
STUDIA MATHEMATICA
Anno di pubblicazione
2014
ISSN
0039-3223
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
1
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social