Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach
Abstract
In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available. The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios.
Autore Pugliese
Tutti gli autori
-
F. Bandiera , O. Besson , G. Ricci
Titolo volume/Rivista
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Anno di pubblicazione
2011
ISSN
1053-587X
ISBN
Non Disponibile
Numero di citazioni Wos
26
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
40
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social