Acquisition of a Desired Pure-Spin Condition for a Magnetically Actuated Spacecraft
Abstract
A rigorous proof of global exponential stability is derived for a magnetic control law that drives a rigid satellite toward a pure-spin condition around a prescribed principal axis of inertia with a desired angular rate. The proof represents an extension and a generalization of a method proposed by two of the authors of the present note for demonstrating global asymptotic stability for a B-dot-like control law that detumbles a spacecraft to rest by means of magnetic actuators only. The proof of stability in the case of acquisition of a non-zero desired angular rate pure spin state is derived in terms of robustness of the global exponential stability of a nominal system by means of generalized exponential asymptotic stability in variations (GEASV) tools. To this aim, the error dynamics equation is first derived in the classical form of a nominal system perturbed by a vanishing perturbation term. Then, after proving the generalized exponential stability for the nominal system, such result is extended to the perturbed system. As a further contribution, an approach for the choice of the control law gain is proposed to the present application, thus allowing to perform the acquisition of the desired pure-spin condition in quasi-minimum time from arbitrary initial tumbling conditions. Stability and performance of the approach are extensively tested by means of numerical simulation.
Autore Pugliese
Tutti gli autori
-
G. Avanzini , E.L. de Angelis , F. Giulietti
Titolo volume/Rivista
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
Anno di pubblicazione
2013
ISSN
0731-5090
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
4
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social