A study of boundedness in probabilistic normed spaces
Abstract
It was shown [8] that uniform boundedness in a Serstnev PN space $(V,nu,tau,tau^*)$, (named boundedness in the present setting) of a subset $Asubset V$ with respect to the strong topology is equivalent to the fact that the probabilistic radius $R_A$ of $A$ is an element of $D^+$. Here we extend the equivalence just mentioned to a larger class of PN spaces, namely those PN spaces that are topological vector spaces (briefly TV spaces), but are not Serstnev PN spaces. Section 2 presents a characterization of those PN spaces, whether they are TV spaces or not, in which the equivalence holds. In Section 3, a characterization of the Archimedeanity of triangle functions $tau^*$ of the type $tau_{T,L}$ is given. This work is a partial solution to a problem of comparing the concepts of distributional boundedness ($D$--bounded in short) and that of boundedness in the sense of associated strong topology.
Autore Pugliese
Tutti gli autori
-
B. Lafuerza Guillén , C. Sempi , G. Zhang , M. Zhang
Titolo volume/Rivista
NONLINEAR ANALYSIS
Anno di pubblicazione
2010
ISSN
1751-570X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social