A study of boundedness in probabilistic normed spaces

Abstract

It was shown [8] that uniform boundedness in a Serstnev PN space $(V,nu,tau,tau^*)$, (named boundedness in the present setting) of a subset $Asubset V$ with respect to the strong topology is equivalent to the fact that the probabilistic radius $R_A$ of $A$ is an element of $D^+$. Here we extend the equivalence just mentioned to a larger class of PN spaces, namely those PN spaces that are topological vector spaces (briefly TV spaces), but are not Serstnev PN spaces. Section 2 presents a characterization of those PN spaces, whether they are TV spaces or not, in which the equivalence holds. In Section 3, a characterization of the Archimedeanity of triangle functions $tau^*$ of the type $tau_{T,L}$ is given. This work is a partial solution to a problem of comparing the concepts of distributional boundedness ($D$--bounded in short) and that of boundedness in the sense of associated strong topology.


Autore Pugliese

Tutti gli autori

  • B. Lafuerza Guillén , C. Sempi , G. Zhang , M. Zhang

Titolo volume/Rivista

NONLINEAR ANALYSIS


Anno di pubblicazione

2010

ISSN

1751-570X

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile