A reduction algorithm for the weighted stable set problem in claw-free graphs
Abstract
In this article the Lovász–Plummer clique reduction is extended to the weighted case and used to find a maximum weight stable set in a claw-free graph GG with nn nodes in O(n2(n2+L(n)))O(n2(n2+L(n))) time, where L(n)L(n) is the complexity of finding a maximum weight augmenting path in a line graph HH with nn nodes. The best algorithm known to date to solve the latter problem is Gabow’s maximum weight matching algorithm (applied to the root graph of HH) which has a complexity of O(n2logn)O(n2logn). It follows that our algorithm can produce a maximum weight stable set in a claw-free graph in O(n4logn)O(n4logn) time.
Autore Pugliese
Tutti gli autori
-
P. Nobili , A. Sassano
Titolo volume/Rivista
DISCRETE APPLIED MATHEMATICS
Anno di pubblicazione
2014
ISSN
0166-218X
ISBN
Non Disponibile
Numero di citazioni Wos
1
Ultimo Aggiornamento Citazioni
28/04/2018
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
22/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social