A reduction algorithm for the weighted stable set problem in claw-free graphs

Abstract

In this article the Lovász–Plummer clique reduction is extended to the weighted case and used to find a maximum weight stable set in a claw-free graph GG with nn nodes in O(n2(n2+L(n)))O(n2(n2+L(n))) time, where L(n)L(n) is the complexity of finding a maximum weight augmenting path in a line graph HH with nn nodes. The best algorithm known to date to solve the latter problem is Gabow’s maximum weight matching algorithm (applied to the root graph of HH) which has a complexity of O(n2logn)O(n2logn). It follows that our algorithm can produce a maximum weight stable set in a claw-free graph in O(n4logn)O(n4logn) time.


Autore Pugliese

Tutti gli autori

  • P. Nobili , A. Sassano

Titolo volume/Rivista

DISCRETE APPLIED MATHEMATICS


Anno di pubblicazione

2014

ISSN

0166-218X

ISBN

Non Disponibile


Numero di citazioni Wos

1

Ultimo Aggiornamento Citazioni

28/04/2018


Numero di citazioni Scopus

3

Ultimo Aggiornamento Citazioni

22/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile