A Model for Staircase Formation in Fingering Convection
Abstract
Fingering convection is a convective instability that occurs in fluids where two buoyancy-changing scalars with different diffusivities have a competing effect on density. The peculiarity of this form of convection is that, although the transport of each individual scalar occurs down-gradient, the net density transport is up-gradient. In a suitable range of non-dimensional parameters, solutions characterized by constant vertical gradients of the horizontally averaged fields may undergo a further instability, which results in the alter- nation of layers where density is roughly homogeneous with layers where there are steep vertical density gradients, a pattern known as “doubly-diffusive staircases”. This instability has been interpreted in terms of an effective negative diffusivity, but simplistic parameteri- zations based on this idea, obviously, lead to ill-posed equations. Here we propose a math- ematical model that describes the dynamics of the horizontally-averaged scalar fields and the staircase-forming instability. The model allows for unstable constant-gradient solutions, but it is free from the ultraviolet catastrophe that characterizes diffusive processes with a negative diffusivity.
Autore Pugliese
Tutti gli autori
-
F. Paparella , J. von Hardenberg
Titolo volume/Rivista
ACTA APPLICANDAE MATHEMATICAE
Anno di pubblicazione
2014
ISSN
0167-8019
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social