A micromechanical approach for the micropolar modeling of heterogeneous periodic media
Abstract
Computational homogenization is adopted to assess the homogenized two-dimensional response of periodic composite materials where the typical microstructural dimension is not negligible with respect to the structural sizes. A micropolar homogenization is, therefore, considered coupling a Cosserat medium at the macro-level with a Cauchy medium at the micro-level, where a repetitive Unit Cell (UC) is selected. A third order polynomial map is used to apply deformation modes on the repetitive UC consistent with the macro-level strain components. Hence, the perturbation displacement field arising in the heterogeneous medium is characterized. Thus, a newly defined micromechanical approach, based on the decomposition of the perturbation fields in terms of functions which depend on the macroscopic strain components, is adopted. Then, to estimate the effective micropolar constitutive response, the well known identification procedure based on the Hill-Mandel macro-homogeneity condition is exploited. Numerical examples for a specific composite with cubic symmetry are shown. The influence of the selection of the UC is analyzed and some critical issues are outlined.
Autore Pugliese
Tutti gli autori
-
De Bellis M. L. , Addessi D.
Titolo volume/Rivista
FRATTURA E INTEGRITÀ STRUTTURALE
Anno di pubblicazione
2014
ISSN
1971-8993
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
28/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social