A micromechanical approach for the Cosserat modeling of composites
Abstract
The present paper deals with the homogenization problem of periodic composite materials, considering a Cosserat continuum at the macro-level and a Cauchy continuum at the micro-level. Consistently with the strain-driven approach, the two levels are linked by a kinematic map based on a third order polynomial expansion. Because of the assumed regular texture of the composite material, a Unit Cell (UC) is selected; then, the problem of determining the displacement perturbation fields, arising when second or third order polynomial boundary conditions are imposed on the UC, is investigated. A new micromechanical approach, based on the decomposition of the perturbation fields in terms of functions which depend on the macroscopic strain components, is proposed. The identification of the linear elastic 2D Cosserat constitutive parameters is performed, by using the Hill–Mandel technique, based on the macrohomogeneity condition. The influence of the selection of the UC is analyzed and some critical issues are outlined. Numerical examples for a specific composite with cubic symmetry are shown.
Autore Pugliese
Tutti gli autori
-
Addessi D. , De Bellis M. L. , Sacco E.
Titolo volume/Rivista
MECCANICA
Anno di pubblicazione
2016
ISSN
0025-6455
ISBN
Non Disponibile
Numero di citazioni Wos
3
Ultimo Aggiornamento Citazioni
25/04/2018
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
24/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social